A Linear Difference Scheme for Dissipative Symmetric Regularized Long Wave Equations with Damping Term

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear Difference Scheme for Dissipative Symmetric Regularized Long Wave Equations with Damping Term

We study the initial-boundary problem of dissipative symmetric regularized long wave equations with damping term by finite difference method. A linear three-level implicit finite difference scheme is designed. Existence and uniqueness of numerical solutions are derived. It is proved that the finite difference scheme is of second-order convergence and unconditionally stable by the discrete energ...

متن کامل

Symmetric Regularized Long Wave Equations with Damping Term

We study the initial-boundary problem of dissipative symmetric regularized long wave equations with damping term. Crank-Nicolson nonlinear-implicit finite difference scheme is designed. Existence and uniqueness of numerical solutions are derived. It is proved that the finite difference scheme is of second-order convergence and unconditionally stable by the discrete energy method. Numerical simu...

متن کامل

Numerical Simulation of Generalized Symmetric Regularized Long-wave Equations with Damping Term

In this paper, we study a numerical simulation method for the initial-boundary problem of dissipative of the generalized symmetric regularized long-wave equations with damping term. A nonlinear-implicit Crank-Nicolson finite difference scheme is constructed. The scheme is a twoleveled scheme. The error estimations, convergence, stablity and uniqueness of the solution are proven by discrete ener...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2010

ISSN: 1687-2770

DOI: 10.1155/2010/781750